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Counterflow of spontaneous mass currents in trapped spin-orbit-coupled Fermi gases
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We use the Bogoliubov–de Gennes formalism and study the ground-state phases of trapped spin-orbit-coupled
Fermi gases in two dimensions. Our main finding is that the presence of a symmetric (Rashba-type) spin-orbit
coupling spontaneously induces counterflowing mass currents in the vicinity of the trap edge, i.e., ↑ and ↓ particles
circulate in opposite directions with equal speed. These currents flow even in noninteracting systems, but their
strength decreases toward the molecular Bose-Einstein-condensate limit, which can be achieved by increasing
either the spin-orbit coupling or the interaction strength. These currents are also quite robust against the effects of
asymmetric spin-orbit couplings in the x and y directions, gradually reducing to zero as the spin-orbit coupling
becomes one dimensional. We compare our results with those of chiral p-wave superfluids and superconductors.
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I. INTRODUCTION

The controversy over the expectation value of the intrinsic
ground-state angular momentum of the A phase of superfluid
3He in a given container has a long history, and it has not yet
attained a universally agreed resolution [1]. For N weakly
interacting particles, theoretical predictions for the BCS
ground state vary by orders of magnitude from N |�|h̄/(2εF ) to
Nh̄/2, where |�| is the amplitude of the order parameter, i.e.,
the pairing energy, and εF is the Fermi energy. At a first glance,
the former expectation, which is based on the observation that
pairing affects not all but only a small fraction (|�|/εF )N
of fermions, seems more intuitive. However, this subject has
recently regained interest in the condensed-matter and atomic
and molecular physics communities due to its relevance to
the possible px + ipy superconducting phase of Sr2RuO4 [2]
and atomic chiral p-wave superfluids [3], respectively, which
support the latter expectation [4,5]. On one hand, these recent
results seem intuitive at least in the strong-fermion-attraction
limit of tightly bound p-wave Cooper molecules, where all of
the molecules can undergo Bose-Einstein condensation (BEC)
at zero temperature with each molecule having a microscopic
angular momentum h̄. On the other hand, they seem coun-
terintuitive in the weak-fermion-attraction limit of loosely
bound and largely overlapping p-wave Cooper pairs, since
these results imply that the angular momentum in the BCS
ground state is macroscopically different from its vanishing
value in the normal ground state, when the pairing energy
becomes arbitrarily small. While this controversy still awaits
an experimental resolution, here we propose an alternative
atomic system where the microscopic angular momentum of
Cooper pairs can also give rise to a macroscopic one. With
their unique advantages over condensed-matter systems, it
is plausible that the macroscopic angular momentum of this
alternative system may be observed for the first time with cold
atoms, and that this would also shed some light on the 3He
controversy for which the basic mechanism is found to be
similar.

Cold atom systems have already proved to be versatile in
simulating various many-body problems. For instance, one
of the major achievements with atomic Fermi gases in the
past decade is the unprecedented realization of the BCS-BEC

crossover [6], where the ground state of the system can be
continuously tuned from the BCS to the BEC limit as a
function of increasing fermion attraction with the turn of a
knob. The main difference between the BCS-BEC crossover
and the BCS theory is that in the crossover Cooper pairing is
allowed not only for fermions with energies close to the Fermi
energy but also for all pairs with appropriate momenta [1,6].
Having established the basic tools, it is arguable that one of
the most promising research directions to pursue with cold
Fermi gases is the artificial spin-orbit gauge fields. Such a
field has already been realized with cold Bose gases [7,8]
using a novel technique based on spatially dependent optical
coupling between internal states of the atoms, and the same
technique is equally applicable for neutral fermionic atoms.
In fact, we have recently learned that the first generation of
quantum degenerate spin-orbit-coupled Fermi gases has been
created with 40K atoms [9].

This immediate possibility of creating a spin-orbit-coupled
Fermi gas has already received tremendous theoretical interest
in the condensed-matter and atomic physics communities: a
number of exotic superfluid phases with balanced or imbal-
anced populations, at zero or finite temperatures, in two or
three dimensions, etc., have been explored [10–23]. Motivated
by these recent advances, here we study the ground-state
and finite-temperature phases of trapped spin-orbit-coupled
Fermi gases, and our main results are as follows. We find
that the presence of spin-orbit coupling (SOC) spontaneously
induces counterflowing ↑ and ↓ mass currents in the vicinity
of the trap edge [24]. We show that these currents flow even
in noninteracting systems, and that they are quite robust
against the effects of asymmetric SOC in the x and y

directions, gradually reducing to zero as the SOC becomes
one dimensional. However, their strength decreases toward
the molecular BEC limit, which can be achieved by increasing
either the SOC or the interaction strength. We argue that the
origin of spontaneously induced counterflowing mass currents
in spin-orbit-coupled Fermi gases can be understood via a
direct correspondence with chiral p-wave superfluids and
superconductors, but with some fundamental differences.

The rest of the paper is organized as follows. In Sec. II,
first we introduce the mean-field Hamiltonian that is used to
describe the spin-orbit-coupled Fermi gases on optical lattices

053634-11050-2947/2012/85(5)/053634(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.053634
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and then use the Bogoliubov–de Gennes (BdG) formalism to
obtain generalized self-consistency equations for the number
of fermions, superfluid order parameter, and strength of
circulating mass currents. The numerical solutions of this
formalism are presented in Sec. III, which is followed by a
brief discussion of their experimental realization in Sec. IV.
We summarize our main findings in Sec. V.

II. THEORETICAL BACKGROUND

In this paper, we consider a harmonically trapped two-
dimensional optical lattice in the presence of a non-Abelian
gauge potential. In addition to the usual spin-conserving
hopping terms, the main effect of such a gauge potential is
the appearance of an additional spin-flipping hopping term in
the single-particle kinetic energy term, as discussed next.

A. Hamiltonian

Spin-orbit-coupled Fermi gases on optical lattices can be
described by the grand-canonical mean-field Hamiltonian

H = −t
∑
i,ê

(C†
i+êφi+ê,iCi + H.c.)

−
∑

i

(
μσ + V H

σi − V T
i

)
c
†
σ icσ i

+
∑

i

(�ic
†
↑ic

†
↓i + �∗

i c↓ic↑i), (1)

where the operator c
†
σ i (cσi) creates (annihilates) a pseudospin

σ = {↑,↓} fermion at lattice site i, the spinor C
†
i = (c†↑i ,c

†
↓i)

denotes the fermion operators collectively, ê = {x̂,ŷ} allows
only nearest-neighbor hopping, and H.c. is the Hermitian con-
jugate. For a generic gauge field A = (ασy, − βσx), where σe

is the Pauli matrix and {α,β} � 0 are independent parameters
characterizing both the strength and the symmetry of the spin-
orbit coupling, the ↑ and ↓ fermions gain φi+x̂,i = e−iασy phase
factors for hopping in the positive x direction and φi+ŷ,i =
eiβσx phase factors for hopping in the positive y direction. Note
that the spin-conserving and spin-flipping hopping terms are
proportional, respectively, to cos α and sin α in the x direction
and to cos β and sin β in the y direction. The off-diagonal
coupling �i is the mean-field superfluid order parameter to be
specified below, and V H

σi = gn−σ i is the Hartree term, where
g � 0 is the strength of the on-site attractive interaction and
nσi is the filling of σ fermions at site i. Here, (−↑) =↓ and
vice versa. We introduce σ -dependent chemical potentials μσ

to fix the number of σ fermions independently, but we assume
both ↑ and ↓ fermions experience the same trapping potential
V T

i = V0r
2
i /2, where the distance ri is measured from the

center in our L × L lattice. Next, we solve this Hamiltonian
via the BdG formalism.

B. Bogoliubov–de Gennes formalism

The BdG equations are obtained by diagonalizing
the quadratic Hamiltonian given above via a generalized
Bogoliubov-Valatin transformation, leading to a 4L2 × 4L2

matrix-eigenvalue problem,

∑
j

⎛
⎜⎜⎜⎝

T↑↑ T↑↓ 0 �

T↓↑ T↓↓ −� 0

0 −�∗ −T ∗
↑↑ −T ∗

↑↓
�∗ 0 −T ∗

↓↑ −T ∗
↓↓

⎞
⎟⎟⎟⎠

ij

⎛
⎜⎜⎜⎜⎝

u
↑
nj

u
↓
nj

v
↑
nj

v
↓
nj

⎞
⎟⎟⎟⎟⎠

= εn

⎛
⎜⎜⎜⎜⎝

u
↑
ni

u
↓
ni

v
↑
ni

v
↓
ni

⎞
⎟⎟⎟⎟⎠

,

(2)

where uσ
ni and vσ

ni are the components of the nth quasiparticle’s
wave function at site i, and εn � 0 is the corresponding
energy eigenvalue. While the off-diagonal couplings are
�ij = �iδij diagonal in site indices since we consider on-site
interactions only, the nearest-neighbor hopping and on-site
energy terms can be written compactly as T

ij

σσ ′ = −t
ij

σσ ′ −
(μσ + V H

σi − V T
i )δij δσσ ′ , where δij is the Kronecker delta.

Here, the nonvanishing nearest-neighbor hopping elements are
t i,i+x̂
σσ = t cos α and t

i,i+x̂
↑↓ = −t

i,i+x̂
↓↑ = −t sin α for the positive

x direction and t
i,i+ŷ
σσ = t cos β and t

i,i+ŷ

↑↓ = t
i,i+ŷ

↓↑ = it sin β

for the positive y direction. Note that the hoppings in the
negative x and y directions are simply Hermitian conjugates.

Equation (2) needs to be solved simultaneously with the
order parameter �i = g〈c↑ic↓i〉 and number nσi = 〈c†σ icσ i〉
equations for a self-consistent set of �i and μσ solutions.
Here, 〈· · ·〉 is a thermal average. Using the Bogoliubov-Valatin
transformation, we obtain

�i = g
∑

n

[u↑
ni(v

↓
ni)

∗f (−εn) + u
↓
ni(v

↑
ni)

∗f (εn)], (3)

nσi =
∑

n

[∣∣uσ
ni

∣∣2
f (εn) + ∣∣vσ

ni

∣∣2
f (−εn)

]
, (4)

where f (x) = 1/(ex/T + 1) is the Fermi-Dirac distribution
function and T is the temperature. Here, we set the Boltzmann
constant kB to unity. Note that 0 � nσi � 1 is the number of σ

fermions at site i (number filling) such that Nσ = ∑
i nσ i gives

the total number of σ fermions. Equations (2)–(4) correspond
to the generalization of the BdG equations [25] to the case of
spin-orbit-coupled Fermi gases on optical lattices.

C. Circulating mass currents

Once we obtain the self-consistent solutions for the
quasiparticle wave functions and the corresponding energy
spectrum, it is straightforward to calculate any of the desired
observables. For instance, in this paper we are interested in
the quantum-mechanical probability current (mass or particle
current) of σ fermions at site i defined by Jσ i = J x

σi x̂ + J
y

σi ŷ,

where J e
σ i = −it i,i+ê

σσ 〈c†σ icσ,i+ê − H.c.〉 is the eth component.
Using the Bogoliubov-Valatin transformation, we obtain

J e
σ i = −it i,i+ê

σσ

∑
n

[(
uσ

ni

)∗
uσ

n,i+êf (εn)

+ (
vσ

ni

)∗
vσ

n,i+êf (−εn) − H.c.], (5)

where we set the lattice spacing and h̄ to unity. In our
two-dimensional system, we expect mass currents to circulate
around the central site, so that Jσ i = Jσi θ̂ , where θ is the
azimuthal angle. In addition, the local angular momentum
associated with such a circulating mass current is in the z

direction, and its magnitude at a particular site i is simply
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related to the local mass current by Lz
σi = xiJ

y

σ i − yiJ
x
σ i,

where xi and yi are the coordinates of site i with respect to the
center, i.e., the minimum of the trapping potential. In this paper,
we are interested in the total absolute angular momentum per
σ particle, which is given by Lz

σ = (1/Nσ )
∑

i ri |Jσi |.
Having established the BdG formalism, now we are ready

to present our numerical solutions for the ground-state and
finite-temperature phases, which are obtained by solving
Eqs. (2)–(4) in a self-consistent manner.

III. NUMERICAL RESULTS

Our numerical calculations are performed on a two-
dimensional square lattice with L = 48 lattice sites in each
direction. We take V0 ≈ 0.014t as the strength of the trapping
potential, and discuss both symmetric (α = β) and asymmetric
(α 	= β) SOC fields. Since we are mainly interested in low-
filling population-balanced systems, we set N↑ = N↓ = 125,
and study the resultant phases as a function of g, α, and β.
However, we briefly comment on the effects of high filling
and population imbalance on the ground-state phases toward
the end of this section.

In Fig. 1, we show the strength of the ↑ mass current J↑i at
zero temperature (T = 0) for noninteracting (g = 0) systems
with symmetric and asymmetric SOC, where we set α = π/4
and vary the β parameter. We use Fig. 1(a) as our reference data
in all of our discussions below. First of all, the coarse graining
of the data near the trap center is a finite-size lattice effect and it
does not affect our main findings. In addition, due to the time-
reversal symmetry, J↓i has exactly the opposite circulation
for population-balanced systems and this current is not shown
throughout this paper. As β decreases from the symmetric
case with β = π/4 to β = 0, the asymmetry between the x

and y directions increases in such a way that the spin-flipping
hopping gradually decreases to zero in the y direction, and the
SOC field eventually becomes purely one dimensional in the
x direction. We find that the mass current flows as long as
the SOC field has both x and y components, and its strength
decreases gradually as a function of increasing asymmetry of
the SOC fields. Note that, since the asymmetric SOC breaks the
C4 symmetry of the square lattice, the resultant mass currents
also have reduced symmetry in Figs. 1(b) and 1(c). In addition,
we see that the gas expands a little with increasing asymmetry,
which is due to the decrease in density of single-particle states.

In Fig. 2, we show the mass current J
y

↑i and filling n↑i

of ↑ fermions at T = 0 for noninteracting systems with
varying symmetric SOC strengths α = β. We find that J↑i first
increases and then decreases as α = β is increased from 0 to
π/2. It is expected that the strength of the mass current rapidly
increases as a function of increasing spin-flipping hopping with
respect to the spin-conserving hopping, since the presence of
a nonzero SOC is what allowed the mass current to form
in the first place. However, as the SOC terms dominate, the
chemical potential gradually drops below the band minimum,
and then the system gradually crosses over to the molecular
BEC side. We note that, in contrast to the no-SOC case
where the formation of a two-body bound state between ↑
and ↓ fermions requires a finite interaction threshold in a
two-dimensional lattice, here it can form even for arbitrarily
small interactions simply by an increase in the SOC, due to

-0.01  0  0.01

(a)

-0.01  0  0.01

(b)

-0.01  0  0.01

(c)

FIG. 1. (Color online) The strength of the ↑ mass current J↑i

(in units of t) is shown as a function of lattice coordinates xi and
yi at zero temperature (T = 0) for noninteracting systems (g = 0).
Here, we consider (a) symmetric SOC where we set α = β = π/4,
and (b),(c) asymmetric SOCs where we set β to π/8 in (b) and
π/16 in (c), while keeping α = π/4. The lighter, yellow (darker, red)
indicates clockwise (counterclockwise) circulation. J↓i has exactly
the opposite circulation and it is not shown.

the increased single-particle density of states. Therefore, it is
expected that the rapid increase in the strength of the mass
current is followed by a gradual decrease at larger SOC, and
that the mass current eventually vanishes at sufficiently large
SOC. In addition, we see that the gas shrinks with increasing
SOC, which is again due to the increased density of states. Note
that the ratio between the trapping potential and the effective
hopping terms also increases as α = β increases from 0 to
π/2. We also calculate the absolute angular momentum per
particle, Lz

σ , and find approximately 0.53, 0.56, and 0.38 (in
units of h̄), when α = β is set to π/4, 5π/16, and 7π/16,
respectively.

In Fig. 3, we show the mass current J
y

↑i and filling n↑i of
↑ fermions at T = 0 for symmetric (α = β = π/4) SOC with
varying interaction strength g. The corresponding superfluid
order parameter |�i | has an approximate peak value of 0,
0.05t , and 1.4t at the trap center when g equals 0, 1.4t , and
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FIG. 2. (Color online) (a) The strength of the ↑ mass current J
y

↑i

(in units of t), and (b) the filling of ↑ fermions n↑i at T = 0 as
functions of xi , when yi = 0. Here, the system is noninteracting, and
we set α = β to π/4 (solid black), 5π/16 (dashed red), and 7π/16
(dotted blue). Coarse-grained data are a finite-size lattice effect.

4.2t , respectively (not shown). It is clearly seen that increasing
the g has qualitatively the same effect on the ground-state
phases as increasing the SOC. For instance, we find that the
mass current first increases and then decreases as a function
of increasing g. In addition, the gas shrinks with increasing g,
due to the formation of more tightly bound Cooper pairs. We
again calculate the absolute angular momentum per particle,
Lz

σ , and find approximately 0.53, 0.49, and 0.22 (in units of h̄),
when g is set to 0, 1.4t , and 4.2t , respectively. Therefore, Lz

σ

again deviates significantly from ≈0.5 as a result of increased
filling around the trap center.

In Fig. 4, we show the mass current J
y

↑i and filling
n↑i of ↑ fermions for noninteracting systems with varying
temperature T , where we set symmetric (α = β = π/4) SOC.
Finite temperature excites more and more particles to higher
oscillator states as a function of increasing T , and this naturally
leads to an increase in the system size and decrease in the
strength of the mass currents. This is clearly seen in the figure,
where the peak value of J

y

↑i reduces approximately to half of
its T = 0 value when T 
 0.14t , but with a larger width. We
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0.015

-20 0 20

J
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xi

0

0.14

0.28

0.42

-20 0 20

n
↑i

xi

g = 0
1.4t
4.2t

(a () b)

FIG. 3. (Color online) (a) The strength of the ↑ mass current
J↑i (in units of t), and (b) the filling of ↑ fermions n↑i at T = 0
as functions of xi , when yi = 0. Here, the SOC is symmetric with
α = β = π/4, and we set g to 0 (solid black) 1.4t (dashed red), and
4.2t (dotted blue). Coarse-grained data are a finite-size lattice effect.
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FIG. 4. (Color online) (a) The strength of the ↑ mass current J↑i

(in units of t), and (b) the filling of ↑ fermions n↑i at finite T as a
function of xi , when yi = 0. Here, the system is noninteracting and
SOC is symmetric with α = β = π/4, and we set T to 0 (solid black)
0.14t (dashed red), and 0.35t (dotted blue). Coarse-grained data are
a finite-size lattice effect.

calculate the absolute angular momentum per particle, Lz
σ , and

find approximately 0.53, 0.33, and 0.16 (in units of h̄), when
T is set to 0, 0.14t , and 0.35t , respectively. Therefore, Lz

σ

decreases significantly from its ground-state value ≈0.5 as the
temperature increases.

So far we have discussed only population-balanced systems
with a low filling at the trap center, i.e., nσi � 0.4, and here we
briefly comment on the effects of high filling and population
imbalance on the ground-state phases [25]. First of all, due to
the particle-hole symmetry of the Hamiltonian around nσi =
0.5, in addition to the mass-current peak circulating in the
vicinity of the trap edge, an additional peak that is circulating
mostly near the trap center is induced when the trap center
is close to a band insulator, i.e., nσi 
 1. Therefore, mass
currents show a double-ring structure in high-filling lattice
systems. Second, the strengths of mass currents are quite robust
against the effects of imbalanced populations. For instance,
when the total number of ↓ fermions is reduced from N↓ = 125
in Fig. 1(a) to N↓ = 20 while keeping N↑ = 125 fixed, so
that n↑ ≈ 0.3 and n↓ ≈ 0.05 at the trap center, the maximum
currents J↑ � J↓ ≈ 5 × 10−3t occur at about the same radial
distance as the population-balanced case shown in Fig. 1(a).

IV. DISCUSSION

Having established the qualitative behavior of sponta-
neously induced counterflowing mass currents in spin-orbit-
coupled Fermi gases, next we argue that the origin of these
currents can be understood via a direct correspondence with
chiral p-wave superfluids and superconductors.

A. Correspondence with chiral p-wave systems

The origin of spontaneously induced counterflowing mass
currents near the trap edge can be understood via a direct
correspondence with the px + ipy superfluids and supercon-
ductors, e.g., the A phase of liquid 3He, for which it is
known that a spontaneous mass current also flows near the
boundary [4,5]. In these p-wave systems, the mass current
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and hence the macroscopic angular momentum are associated
with the chirality of Cooper pairs. The chirality can be most
easily seen by noting that the chiral p-wave order parameter
�k ∝ (x̂ ± iŷ) · k, where k is the relative momentum of
a Cooper pair, is an eigenfunction of the orbital angular
momentum with eigenvalue ±h̄. This mechanism explains our
findings since it can be shown that the order parameter of
spin-orbit-coupled Fermi gases with Rashba-type SOC and
s-wave contact interactions has chiral p-wave symmetry. To
see this one needs to transform the Hamiltonian to the helicity
basis, i.e., the pseudospin is no longer a good quantum number
in the presence of SOC, and the spin direction is either parallel
or antiparallel to the direction of the in-plane momentum
in the ± helicity basis. In the helicity-basis representation,
it becomes clear that only intraband Cooper pairing occurs
between fermions with the same helicity and that the order
parameter for ± helicity pairing has px ∓ ipy symmetry [12].

Although the basic mechanisms in chiral p-wave systems
and spin-orbit-coupled Fermi gases share some similarities
with respect to spontaneously induced edge currents, they
also differ in fundamental ways. For instance, in contrast to
the chiral p-wave systems where the formation of Cooper
pairs and hence the mass current requires an interacting
system, in spin-orbit-coupled Fermi gases currents flow even
in the absence of interactions. In addition, the chiral p-wave
systems belong to the topological class of integer quantum
Hall systems, and since these systems both break time-
reversal symmetry, they exhibit spontaneous edge currents
circulating along a particular direction. However, spin-orbit-
coupled Fermi gases preserve time-reversal symmetry just
like quantum spin Hall systems, and therefore they both
exhibit spontaneously induced counterflowing ↑ and ↓ edge
currents. Next, we comment on the experimental realization
of spontaneously induced edge currents in atomic systems.

B. Experimental realization

In comparison to bulk (center) effects, there is no doubt
that the edge effects are more difficult to observe in trapped
atomic systems. This is because as the local density decreases
from the central region to the edges, it gets harder to probe local
properties. In addition, the local critical superfluid temperature
eventually drops below the temperature of the system near the
edges, and the superfluidity is also lost starting from the edges
inward. One way to partially overcome such problems could be
to load the optical lattice potential with higher particle fillings
such that the trap center is close to a band insulator, i.e., unit

filling. In this case, an additional mass-current peak circulates
mostly near the trap center (see above), and such a local current
could be easier to probe with current experimental capabilities.

Measurement of the angular momentum of rotating atomic
systems has so far been achieved only indirectly, by observing
the shift of the radial quadrupole modes. While this technique
was initially used for rotating atomic BECs [26,27], it has
recently been applied to rotating fermionic superfluids in the
BCS-BEC crossover [28]. We believe a similar technique could
be used for measuring the intrinsic angular momentum of
spin-orbit-coupled Fermi gases, which may provide indirect
evidence for counterflowing mass currents. In addition, we
note that a realistic scheme has recently been proposed to
detect topological edge states in an optical lattice under
a synthetic magnetic field [29]. This proposal is based on
a generalization of Bragg spectroscopy that is sensitive to
angular momentum.

V. CONCLUSIONS

To conclude, we showed that the presence of Rashba-type
SOC spontaneously induces counterflowing ↑ and ↓ mass
currents. While these currents have a single peak that is
circulating mostly near the trap edge in low-filling lattice
systems, an additional peak that is circulating mostly near
the trap center is also induced in high-filling lattice systems,
which exhibit a double-ring structure. We note that our results
for the low-filling lattice systems are directly applicable
to dilute systems (without the optical lattice potential), for
which we expect qualitatively similar behavior. These currents
flow even in noninteracting systems, and they are quite
robust against the effects of imbalanced populations and/or
asymmetric SOC in the x and y directions. However, their
strength decreases toward the molecular BEC limit, which can
be achieved by increasing either the SOC or the interaction
strength. We argued that the origin of spontaneously induced
counterflowing mass currents in spin-orbit-coupled Fermi
gases can be understood via a direct correspondence with
chiral p-wave superfluids and superconductors, but with some
fundamental differences.
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